Present and Future of Head and Neck Cancer Therapy
(Focus at systemic therapy)

Jan B; Vermorken, MD, PhD
Department of Medical Oncology
Antwerp University Hospital
Edegem, Belgium

1st Hellenic Conference on Head and Neck Cancer, organized by the Hellenic Society of Head and Neck Oncology (HeSHNO), Athens, October 21-22, 2017
Conflict of Interest Disclosure

• Participates in Advisory Boards of:
 Amgen, AstraZeneca, Boehringer Ingelheim, Innate Pharma, Merck KGaA, Merck Sharp & Dome Corp, PCI Biotech, Synthon Biopharmaceuticals, Vaccinogen

• Lecturer fee from:
 Merck-Serono, Vaccinogen
Head and Neck Cancer (HNC)
Introduction

- A changing population
 - Incidence of elderly patients increasing

- A changing disease
 - Incidence of viral induced tumors increasing

- A changing treatment approach
 - Surgery (reconstruction, organ sparing, TORS)
 - Radiation (fractionation, targeting, technique, CRT, BRT)
 - Systemic (cytotoxics, targeted agents, immunotherapy)

- Multidisciplinary Team (MDT) meetings
 - Patient centered approach
Treatment Strategies in Locoregionally Advanced SCCHN

- Definitive CCRT (planned or optional surgery [PS or OpS])\(^1\)*
- Surgery → adjuvant RT or concurrent CRT (CCRT)\(^1\)
- Altered fractionation radiotherapy (PS or OpS)\(^2\)*
- Hypoxic modification of radiotherapy (PS or OpS)\(^3\)*
- Definitive RT + cetuximab (BRT; with PS or OpS)
- TPF induction CT → definitive local therapy (RT, CCRT, BRT)

\(^1\)MACH-NC meta-analysis; \(^2\)MARCH meta-analysis; \(^3\)DAHANCA meta-analysis (*all 3 approaches have level IA evidence)

CCRT = chemoradiation with cisplatin; BRT = bioradiation
Clinical Practice Guidelines for Patients with Locoregionally Advanced SCCHN

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery → RT or CCRT</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Concomitant CT and RT*</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Cetuximab plus RT</td>
<td>II</td>
<td>B</td>
</tr>
<tr>
<td>CCRT or ICT → RT for organ preservation</td>
<td>II</td>
<td>A</td>
</tr>
<tr>
<td>ICT → CCRT (sequential therapy)</td>
<td></td>
<td>Still under evaluation</td>
</tr>
</tbody>
</table>

*in case of mutilating surgery and in nonresectable disease ; **Cisplatin dose: 100 mg/m² x3 during CF-RT**

USA NCCN Guidelines for LA SCCHN
Level of evidence

Squamous Cell Cancers
Lip, Oral Cavity, Oropharynx, Hypopharynx, Glottic Larynx,
Supraglottic Larynx, Ethmoid Sinus, Maxillary Sinus, Occult Primary:

• Primary systemic therapy + concurrent RT
 ➢ High-dose cisplatin\(^3,4\) (preferred) (category 1)
 ➢ Cetuximab\(^5\) (category 1)
 ➢ Carboplatin/infusional 5-FU (category 1)\(^6,7\)
 ➢ 5-FU/hydroxyurea\(^8\)
 ➢ Cisplatin/paclitaxel\(^8\)
 ➢ Cisplatin/infusional 5-FU\(^9\)
 ➢ Carboplatin/paclitaxel\(^10\) (category 2B)
 ➢ Weekly cisplatin 40 mg/m\(^2\) (category 2B)\(^11,12\)

• Postoperative chemoradiation
 ➢ Cisplatin\(^13-17\) (category 1 for high risk)

Note: All recommendations are category 2A unless otherwise indicated.
Conclusion on Cisplatin Dose: ASCO 2015*

- Total cisplatin dose (TD-DDP) is important.
- Effect less apparent in HPV(+) patients
- Low dose weekly cisplatin (LD-DDP) regimens may result in lower TD-DDP than with the HD-DDP 3 weekly
- Greater toxicity with high-dose schedule not demonstrated
- Low-dose weekly regimen may end up with inferior results

- This suggest a need for caution before adopting LD-DDP weekly cisplatin as a treatment standard

\[^1\text{Spreafico et al. Abstract #6020, ASCO 2015)}\]
\[^2\text{Wong et al. Abstract #6021, ASCO 2015)}\]
\[^*\text{Discussant David Adelstein}\]
CCRT: Late Toxicity

• Analysis of 230 patients receiving CCRT in 3 studies (RTOG 91-11, 97-03, 99-14)

MVA: significant variables correlating with severe late toxicity were: older age (OR, 1.05 per year; p=.001), advanced T-stage (OR, 3.07; p=.0036), larynx/hypopharynx primary site (OR, 4.17; p=.0041) and neck dissection (OR, 2.39; p=.018)

CCRT Standard Nonsurgical Therapy

What next in LA-SCCHN?

- Should all patients be treated with CCRT?
- Is further treatment intensification feasible and worth considering?
 - adding more cytotoxic chemotherapy (ICT)
 - adding targeted therapy
 - adding a hypoxic sensitizer to CCRT
 - immunotherapy
- Can we select patient who might need less intensive therapy (de-escalation of locoregional therapy)?
Multidisciplinary Team (MDT) Meetings

- Head and neck surgeon
- Radiation oncologist
- Medical oncologist
- Anesthesiologist, internist, general practitioner
- Biologist, pathologist
- Radiologist
- Social worker, psychologist
- Speech therapist
- Dietician

Guidelines Clinical trials
Decision Making during MDT Meetings

SCCHN patients

- **Disease factors** (e.g. site, stage, biology [HPV, EGFR], specific risk factors for locoregional or distant relapse)

- **Patient factors** (e.g. age, sex, performance status, nutritional status, comorbidities, oral health, lifestyle habits, socio-economic status [marital status])

- **Treatment factors** (surgery, radiotherapy, chemotherapy, immunotherapy, targeted therapy)

- **Communication / information / support / taking into account the wish of the patient**
Effectiveness of Chemoradiation in HNC in an Older Patient Population*

SEER Database

- The unadjusted multivariate Cox regression model for the entire cohort demonstrated no benefit for CCRT over RT (HR 1.134, 95% CI: 1.017-1.203, P<.001)

- Significantly associated with overall survival were:
 - Comorbidities
 - Medicare eligibility
 - Stage
 - Lymph node status
 - IMRT receipt
 - Marital status
 - Cancer site
 - Grade
 - Diagnostic era
 - Age

* VanderWalde et al. Int J Radiation Oncol Biol Phys 2014: 89: 30-37 (10,599 patients treated outside randomized control setting. SEER-Medicare linked database (1992-2007) : 68% male, 89% white, 54% no comorbidities, 55% married. 74% were treated with RT, 26% with CCRT
The 3-year rates of overall survival were 93.0% (95% CI, 88.3 to 97.7) in the low-risk group, 70.8% (95% CI, 60.7 to 80.8) in the intermediate-risk group, and 46.2% (95% CI, 34.7 to 57.7) in the high-risk group.

Randomized Trials of CCRT vs BRT

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Drug (exp)</th>
<th>Comparator</th>
<th>Phase (no pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT 1302834</td>
<td>USA</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>III (987)<sup>1</sup></td>
</tr>
<tr>
<td>NCT 01874171</td>
<td>UK</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>III (304)<sup>2</sup></td>
</tr>
<tr>
<td>NCT 01855451</td>
<td>Australia</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>III (200)<sup>3</sup></td>
</tr>
<tr>
<td>NCT 00169247</td>
<td>France</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>II (156)<sup>4</sup></td>
</tr>
<tr>
<td>NCT 00716391</td>
<td>Spain</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>III (458)<sup>5</sup></td>
</tr>
<tr>
<td>NCT 00547157</td>
<td>“Concert 2”</td>
<td>Panitumumab</td>
<td>Cisplatin</td>
<td>II (150)</td>
</tr>
<tr>
<td>NCT 00820248</td>
<td>Canada</td>
<td>Panitumumab</td>
<td>Cisplatin</td>
<td>III (320)<sup>6</sup></td>
</tr>
</tbody>
</table>

¹in HPV(p16)+OPC (RTOG-1016); ²De-Escalate study in HPV(p16)+OPC; ³TROG 12.01 study in HPV(p16)+OPC; ⁴Tremplin (after TPF); ⁵after TPF; ⁶Af (in exp. arm) vs SF (comparator);
CCRT Standard Nonsurgical Therapy
What next in LA-SCCHN

• Should all patients be treated with concurrent CRT?

• Is further treatment intensification feasible and worth considering?
 - adding more cytotoxic chemotherapy (ICT)
 - adding targeted therapy
 - adding a hypoxic sensitizer to concurrent CRT
 - immunotherapy

• Can we select patient who might need less intensive therapy (de-escalation of locoregional therapy)?
Randomized Trials of Sequential Therapy versus Concurrent Chemoradiation Only

<table>
<thead>
<tr>
<th>Group</th>
<th>Regimen</th>
<th>Survival ↑</th>
<th>Tox↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTCC (Sp)¹</td>
<td>TPF (or PF) x 3 → CCRT (P)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CCRT (cisplatin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston (US)²</td>
<td>TPF x 3 → CCRT (C or TAX)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CCRT (cisplatin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago (US)³</td>
<td>TPF x 2 → CCRT (THFX)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CCRT (THFX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCTCC (It)⁴</td>
<td>CCRT (PF) w/wo foregoing TPF</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>BRT (Cetuximab) w/wo foregoing TPF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Randomized Trials of CCRT ± EGFR Inhibition

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Anti-EGFR</th>
<th>CCRT (drug)</th>
<th>Phase (no pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT 00265941</td>
<td>USA</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>III (895)¹</td>
</tr>
<tr>
<td>NCT 01301248</td>
<td>Greece</td>
<td>Cetuximab</td>
<td>Cisplatin</td>
<td>II (80)</td>
</tr>
<tr>
<td>NCT 00496652</td>
<td>Denmark</td>
<td>Zalutumumab</td>
<td>Cisplatin</td>
<td>III (619)</td>
</tr>
<tr>
<td>NCT 00500760</td>
<td>Concert-1</td>
<td>Panitumumab</td>
<td>Cisplatin</td>
<td>II (153)</td>
</tr>
<tr>
<td>NCT 00229723</td>
<td>International</td>
<td>Gefitinib</td>
<td>Cisplatin</td>
<td>II (224)²</td>
</tr>
<tr>
<td>NCT 00410826</td>
<td>USA</td>
<td>Erlotinib</td>
<td>Cisplatin</td>
<td>II (204)</td>
</tr>
<tr>
<td>NCT 01074021</td>
<td>China</td>
<td>Nimotuzumab</td>
<td>Cisplatin</td>
<td>III (480)³</td>
</tr>
<tr>
<td>NCT 00957086</td>
<td>Singapore</td>
<td>Nimotuzumab</td>
<td>Cisplatin</td>
<td>III (710)⁴</td>
</tr>
<tr>
<td>NCT 01516996</td>
<td>China</td>
<td>Nimotuzumab</td>
<td>TP</td>
<td>II (80)⁵</td>
</tr>
</tbody>
</table>

¹RTOG0522; ²published (no effect); ³study (placebo-controlled) in NPC (2008 stages III/IVa); ⁴placebo controlled in the postoperative setting; ⁵nimotuzumab during 2x ICT and CRT
Hypoxic Modification of Radiotherapy in SCCHN

Head and neck cancer - meta analysis - summary

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Events / Total</th>
<th>Odds ratio and 95% CI</th>
<th>Odds ratio</th>
<th>Risk Reduction</th>
<th>NNT**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypoxic modification</td>
<td>Control</td>
<td>Odds ratio</td>
<td>Risk Reduction</td>
<td>NNT**</td>
</tr>
<tr>
<td>Loco-regional control</td>
<td>1203 / 2406</td>
<td>1383 / 2399</td>
<td>0.71 (0.63-0.80)*</td>
<td>8% (5-10%)*</td>
<td>13</td>
</tr>
<tr>
<td>Disease specific survival</td>
<td>1175 / 2335</td>
<td>1347 / 2329</td>
<td>0.73 (0.64-0.82)</td>
<td>7% (5-10%)</td>
<td>14</td>
</tr>
<tr>
<td>Overall survival</td>
<td>1450 / 2312</td>
<td>1519 / 2305</td>
<td>0.87 (0.77-0.98)</td>
<td>3% (0-6%)</td>
<td>31</td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>159 / 1427</td>
<td>179 / 1391</td>
<td>0.87 (0.69-1.09)</td>
<td>2% (-1-4%)</td>
<td>57</td>
</tr>
<tr>
<td>Radiotherapy complications</td>
<td>307 / 1864</td>
<td>297 / 1822</td>
<td>1.00 (0.82-1.23)</td>
<td>0% (-3-2%)</td>
<td>>></td>
</tr>
</tbody>
</table>

0.5 1 2

Hypoxic modification better Control better

Meta Analysis - Hypoxic modification of radiotherapy in HNSCC

* 95% CI.

** Numbers of patients Needed to Treat to achieve benefit in one patients.

Jens Overgaard. Radiother Oncol 2011; 100: 22-32
10/18 studies originated from Europe (misonidazole)
1219 ROG-HNCG: Study Design

Blinded & randomized trial; 640 patients (200 patients in the positive hypoxic gene profile)

Step 1: Potentially eligible patient with p16(-) confirmed, PIS/IC signature

Step 2: Lab tests, ...

Step 3:
- Sample for gene signature sent to central lab

Trt plan for RT

CRT + nimorazole
- Accl RT (70 Gy, 6 fx/wk) + cddp (40 mg/m² weekly x 5 or 100 mg/m² x 2) + nimorazole (1.2 g/m² daily)

CRT + placebo
- Accl RT (70 Gy, 6 fx/wk) + cddp (40 mg/m² weekly x 5 or 100 mg/m² x 2) + placebo
CA209-410/RTOG 3504: STUDY DESIGN1,2

- Randomized phase III trial, with lead in, of cisplatin-based chemoradiotherapy ± nivolumab in patients with LA SCCHN

N=120

Key Eligibility Criteria
- Intermediate/high risk LA SCCHN
- ECOG PS ≤1
- p16 determination by immunohistochemistry
- No metastatic disease
- No prior radiotherapy of the tumor

Lead in

Phase III

- Study Start Date: June 2016
- Estimated Completion Date: N/A
- Estimated Primary Completion Date: March 2019
- Status: Not yet recruiting
- Sponsor: RTOG Foundation Inc

- Primary Outcome Measures:
 - Phase I: DLT
 - Phase III: OS

- Secondary Outcome Measures:
 - Phase I: None provided
 - Phase III: PFS, QoL

Abbreviations can be found in the speaker notes.
CCRT Standard Nonsurgical Therapy
What next in LA-SCCHN

- Should all patients be treated with concurrent CRT?
- Is further treatment intensification feasible and worth considering?
 - adding more cytotoxic chemotherapy (ICT)
 - adding targeted therapy
 - adding a hypoxic sensitizer to concurrent CRT
 - immunotherapy
- Can we select patients who might need less intensive therapy (de-escalation of locoregional therapy)?
A Role for ICT in HPV-positive OPC?

- No guidelines (NCCN)
- Proposed strategies
 A. The use of induction chemotherapy for patient selection
 - OPC chemosensitive → predicts outcome
 - HPV+ subset of OPC often high N stage
 B. Treatment deintensification*
 - Reduced RT dose (ECOG 1308; Quarterback trial)\(^1\),\(^2\)
 - RT alone, rather than CCRT (ADEPT trial)\(^3\)
 - BRT with cetuximab (RTOG 1016; TROG 12.01, De-escal)

*Candidates for that seems most likely T1-3 and N0-2a stage disease (Quon & Forastiere, 2013)
\(^1\) Stage III-IVB resectable HPVOPC: 3x TCE, when CR-54Gy/27 fr, when PR/SD-69.3 Gy/33fr
\(^2\) Stage III and IV HPVOPC: 3x TPF, when CR/PR randomization between 56 Gy and 70 Gy, when NR standard CCRT
\(^3\) TORS for T1-4a, N+ (ECE+) HPVOPC, negative margins: RT vs CCRT with cisplatin
Expectations for Systemic Therapy LA-SCCHN

- The best approach to larynx preservation (SALTORL)
- HD-CDDP 3-weekly vs LD-CDDP weekly (JCOG 1008)
- Treatment intensification in HPV(-) OPC, HPC and LC patients (CCRT vs CCRT +nimorazole; 1219 ROG-HNCG)
- De-intensification in HPV(+) OPC patients
 - CCRT vs Bioradiation with cetuximab (RTOG 1016, De-ESCALaTE study, TROG 12.01)
 - ICT to select patients for de-escalation (ECOG 1308)
- Studies in the elderly
- Integration of immunotherapy in primary therapy (RTOG 3504)
Standard Treatment Options in R/M-SCCHN 2016

• Resectable disease
 - Surgery at all times if possible
 - Postop RT or CCRT (if not complete) ¹

• Nonresectable disease
 - RT or CCRT (if no organ dysfunction/morbidity) ¹

• Recurrent/Metastatic disease
 - PF+cetuximab (in fit pts, performance status 0 or 1)²,³
 - Single drug therapy with MTX, taxane or cetuximab (PS2)³
 - Best supportive care only (PS3)²,³

Completed Randomized Trials in First-Line Recurrent/Metastatic SCCHN

<table>
<thead>
<tr>
<th>Study/Reference</th>
<th>N</th>
<th>Regimen</th>
<th>RR (%)</th>
<th>PFS (mo)</th>
<th>OS (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOG 5397</td>
<td>117</td>
<td>Cisplatin + cetuximab</td>
<td>26<sup>a</sup></td>
<td>4.2</td>
<td>9.2</td>
</tr>
<tr>
<td>Burtness et al</td>
<td></td>
<td>Cisplatin + placebo</td>
<td>10</td>
<td>2.7</td>
<td>8.0</td>
</tr>
<tr>
<td>J Clin Oncol 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTREME</td>
<td>442</td>
<td>PF<sup>1</sup> + cetuximab</td>
<td>36<sup>a</sup></td>
<td>5.6<sup>b</sup></td>
<td>10.1<sup>c</sup></td>
</tr>
<tr>
<td>Vermorken et al</td>
<td></td>
<td>PF<sup>1</sup></td>
<td>20</td>
<td>3.3</td>
<td>7.4</td>
</tr>
<tr>
<td>SPECTRUM</td>
<td>657</td>
<td>PF<sup>2</sup> + panitumumab</td>
<td>36<sup>a</sup></td>
<td>5.8<sup>b</sup></td>
<td>11.1</td>
</tr>
<tr>
<td>Vermorken et al</td>
<td></td>
<td>PF<sup>2</sup></td>
<td>25</td>
<td>4.6</td>
<td>9.0</td>
</tr>
<tr>
<td>Lancet Oncol 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PF¹ = cisplatin or carboplatin plus 5-FU; PF² = cisplatin plus 5-FU

^{a, b, c}: significant differences
Overall Survival in EXTREME by p16 Status

p16+ patients

![Graph showing overall survival for p16+ patients with CT + cetuximab (n=18) compared to CT (n=23).]

- **HR (95% CI)**: 0.63 (0.30–1.34)
- **p-value**: 0.22

p16− patients

![Graph showing overall survival for p16− patients with CT + cetuximab (n=178) compared to CT (n=162).]

- **HR (95% CI)**: 0.82 (0.65–1.04)
- **p-value**: 0.11

Vermorken et al, Ann Oncol 2014

HRs are CT + cetuximab vs CT; CI, confidence interval; HR, hazard ratio
SPECTRUM: Overall Survival by p16 Status

P16+ patients

- **HR = 0.96 (95%CI: 0.59 - 1.57)**
- **p-value = 0.88**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median OS (95% CI) months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pmab + CT (n = 56)</td>
<td>10.9 (7.1 - 12.6)</td>
</tr>
<tr>
<td>CT alone (n = 37)</td>
<td>12.1 (7.6 - 17.4)</td>
</tr>
</tbody>
</table>

P16- patients

- **HR = 0.73 (95%CI: 0.57 - 0.94)**
- **p-value = 0.02**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median OS (95% CI) months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pmab + CT (n = 165)</td>
<td>11.8 (9.8 - 14.0)</td>
</tr>
<tr>
<td>CT alone (n = 153)</td>
<td>8.6 (6.9 - 11.3)</td>
</tr>
</tbody>
</table>

Quantitative interaction test p-value = 0.332
Second-line Treatment with Anti-EGFR Drugs

Randomized phase III trials in R/M-SCCHN

<table>
<thead>
<tr>
<th>Study/Reference</th>
<th>N</th>
<th>Regimen</th>
<th>RR (%)</th>
<th>PFS</th>
<th>OS (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMEX</td>
<td>486</td>
<td>Gefitinib (250 mg)</td>
<td>3</td>
<td>ND</td>
<td>5.6</td>
</tr>
<tr>
<td>Stewart et al, 2009</td>
<td></td>
<td>Gefitinib (500 mg)</td>
<td>8</td>
<td>ND</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methotrexate</td>
<td>4</td>
<td>ND</td>
<td>6.7</td>
</tr>
<tr>
<td>ECOG 1302</td>
<td>270</td>
<td>D + Gefitinib</td>
<td>12</td>
<td>3.5 (TTP)</td>
<td>7.3</td>
</tr>
<tr>
<td>Argiris et al, 2013</td>
<td></td>
<td>D + placebo</td>
<td>6</td>
<td>2.1 (TTP)</td>
<td>6.0</td>
</tr>
<tr>
<td>ZALUTE</td>
<td>286</td>
<td>Z + BSC (-MTX)</td>
<td>6</td>
<td>2.3*</td>
<td>6.7°</td>
</tr>
<tr>
<td>Machiels et al, 2010</td>
<td></td>
<td>BSC (optional MTX)</td>
<td>1</td>
<td>1.9*</td>
<td>5.2°</td>
</tr>
<tr>
<td>LUX HN1</td>
<td>483</td>
<td>Afatinib</td>
<td>10</td>
<td>2.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Machiels et al, 2015</td>
<td></td>
<td>Methotrexate</td>
<td>6</td>
<td>1.7</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*BSC = best supportive care; Z = zalutumumab; MTX = methotrexate; ND = no data; TTP= time to progression

*HR (95% CI): 0.62 (0.47-0.83), p=0.0010; ° HR (95% CI): 0.77 (0.57-1.05), p=0.0648
Phase 3 CheckMate 141 Study Design

Nivolumab in R/M SCCHN After Platinum Therapy

Randomized, global, phase 3 trial of the efficacy and safety of nivolumab vs investigator's choice in patients with R/M SCCHN

Key Eligibility Criteria
- R/M SCCHN of the oral cavity, pharynx, or larynx
- Progression on or within 6 months of last dose of platinum-based therapy
- Irrespective of no. of prior lines of therapy
- Documentation of p16 to determine HPV status (oropharyngeal)
- Regardless of PD-L1 status

Stratification factor
- Prior cetuximab treatment

Primary endpoint
- OS

Other endpoints
- PFS
- ORR
- Safety
- DOR
- Biomarkers
- Quality of life

Nivolumab
- 3 mg/kg IV Q2W

Investigator’s Choice
- Methotrexate 40 mg/m² IV weekly
- Docetaxel 30 mg/m² IV weekly
- Cetuximab 400 mg/m² IV once, then 250 mg/m² weekly

*aTissue required for testing

DOR = duration of response; IV = intravenous; ORR = objective response rate; PFS = progression-free survival; Q2W = once every 2 weeks; R = randomized. Clinicaltrials.gov NCT02105636.

Presented by Bob Ferris (ASCO 2016)
Overall Survival
Nivolumab in R/M SCCHN After Platinum Therapy

<table>
<thead>
<tr>
<th></th>
<th>Median OS, mo (95% CI)</th>
<th>HR (97.73% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab (n = 240)</td>
<td>7.5 (5.5, 9.1)</td>
<td>0.70</td>
<td>0.0101</td>
</tr>
<tr>
<td>Investigator's Choice (n = 121)</td>
<td>5.1 (4.0, 6.0)</td>
<td>0.70</td>
<td>0.0101</td>
</tr>
</tbody>
</table>

1-year OS rate (95% CI)
36.0% (28.5, 43.4)

16.6% (8.6, 26.8)

No. at Risk

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab</th>
<th>Investigator's Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240</td>
<td>121</td>
</tr>
<tr>
<td>Months</td>
<td>167</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Courtesy of Bob Ferris (ASCO 2016)
Quality of Life and Symptom Burden

Nivolumab in R/M SCCHN After Platinum Therapy

- Nivolumab stabilized PROs while investigator’s choice led to meaningful declines in function and worsening of symptoms.

EORTC QLQ-C30 Physical Function
- Week 9, 15, 21

EORTC QLQ-C30 Social Function
- Week 9, 15, 21

EORTC QLQ-H&N35 Absence of Sensory Problems
- Week 9, 15, 21

EORTC QLQ-H&N35 Absence of Trouble With Social Contact
- Week 9, 15, 21
Expectations for Systemic Therapy
R/M-SCCHN

- Strategies to overcome resistance to cetuximab
- Development of anti-EGFR MoAb with stronger ADCC
- Testing other novel targeted agents in HPV(+/-) SCCHN
- Targeted agents directed by mutational status
- Studies with single agent checkpoint inhibitors (CPIs)
- Combination CPIs (or CPI + chemo) vs Extreme in 1st line
 - Keynote 048 (Pembro vs Pembro + chemo vs Extreme)
 - Kestrel (Durva vs Durva + Treme vs Extreme)
 - Checkmate 651 (Nivo + Ipi vs Extreme)
- Combinations of CPIs with targeted therapy in 1st line
Thank you
RTOG 0522
Progression-Free Survival & Overall Survival

Primary Endpoint

Hazard Ratio (95% CI)
1.05 (0.84, 1.29)
P = 0.66 (log-rank, 1-sided)

2-Year Rate (95% CI)
- Cisplatin: 64.3% (59.7, 68.8)
- Cisplatin+Cet: 63.4% (58.7, 68.0)

Overall Survival (%)

Hazard Ratio (95% CI)
0.87 (0.66, 1.15)
P = 0.17 (log-rank, 1-sided)

2-Year Rate (95% CI)
- Cisplatin: 79.7% (75.9, 83.6)
- Cisplatin+Cet: 82.6% (78.9, 86.3)

Patients at Risk
- Cisplatin: 448, 316, 217, 78
- Cisplatin+Cet: 447, 302, 197, 80

Ang KK et al, ASCO 2011 (abstract #5500)